
Building the clause
Introduction to Syntax, Lecture 8-9

Sandhya Sundaresan, EGG Summer School, Wrocław 2019

August 8-9, 2019



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

A new class of puzzles

In this handout we’re going to go after a group of new problems,
which at first glance look unrelated, but turn out to have a crucial
feature in common.

+ They all involve, in one way or another, something showing
up somewhere other than where we might have expected it.

+ We’ll see that phenomena of this type are widespread and
seem to constitute one of the defining properties of natural
language.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

We can distinguish two broad sub-types:

1 A syntactic object appears in a different position in the
sentence than we would have expected based on things like
selection and the HoP.

2 The form of one syntactic object depends on or reflects
properties of a distinct syntactic object in a different position.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s a quick list of relevant phenomena, some of which we’ll
get to this week, but most of which we won’t:

Agreement

Binding

Negative Polarity Items

Surface subject position

Case

Passivization

Subject-verb inversion

Sequence of tense

Question formation

Determination of non-finite verb forms



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Introducing Agree

An issue with tense-marking

Last time we introduced T as a functional head above vP to host
modals, infinitival to and tense marking. But there’s an issue when
there’s no auxiliary:

(1) Ellie misses Anna.
(2) Ellie missed Anna.

+ Here tense is marked by a suffix on the main verb.

+ But main verbs are of category V (perhaps also including a
v), not T.

+ So how do we get properties of T to affect the pronunciation
of V?



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Two basic possibilities:

1 T and V (and perhaps v) somehow get combined together
when no auxiliary is present, so that T is pronounced as a
suffix on V.

2 There is an operation affecting some features on V or v in a
way related to features in T.

Either one of these requires a serious addition to our theory.

+ For the present, we’ll pursue possibility 2, seeing along the
way that, while we will need something like possibility 1
later, it isn’t quite suited for this particular problem.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Agree

We’re going to work with an idea known as Agree.

Assume first that finite verbs like missed bear a tense feature
which determines their form (we’ll talk about V and ignore v
temporarily until we get a bit further along).

Assume further that this feature must agree, i.e. match with
the tense feature on T.

This will ensure that the verb must have the form appropriate
for the tense of the sentence determined by T.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

This is a bit like the Checking requirement we used for selection:

A selecting head has a dependent category feature, which
checks off when matched with the independent version of the
same feature on its sister.

Here we also need matching, and we can imagine for starters
that while the tense feature on T is independent, the one on
the verbal complex is not.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s a first stab at defining it formally:

(3) Agree
A dependent feature F on a syntactic object Y is checked
when another syntactic object Z bears a matching feature
F.

+ We’re going to have to add something to this characterizing
the structural relationship between Y and Z.

+ But that will have to wait a few minutes until we’ve got a
better idea of the empirical situation.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Now, since we’re saying that the tense features on the verbal
complex are dependent, this will ensure that they always match
with those on T. Consider:

(4) T[past] . . . V [upast]
(5) T[past] . . . V [upres]

+ The [upres] feature on V in 5 doesn’t match the [past] feature
on T, so Agree is not possible.

+ This leaves [upres] unchecked, which will lead to a crash.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

But how do we make sure that things actually come out right? We
can imagine two scenarios:

1 The grammar combines V and T more or less randomly with
all different possible feature values. The combinations that
match, survive. Those that don’t, crash.

2 The grammar is set up so that matching is actually derived by
the derivation, not just checked for. Non-matching
combinations simply never arise.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

We tacitly assumed the first scenario in 4 and 5 above, but it is not
entirely satisfying:

+ It implies that we start up a whole bunch of derivations only
to find out that we don’t have the right pieces.

+ We end up throwing away potentially dozens of crashed
derivations for every one that converges.

That sounds like a waste of computational resources.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

So let’s consider an alternative.

Let’s assume that V starts out with a tense feature that is not
dependent, but unvalued.

Agree then doesn’t just check whether a dependent and an
independent feature match, checking the dependent one.

Instead, it checks whether the attributes of an unvalued and a
valued feature match, and then values the unvalued one to be
the same as the one it’s agreeing with.

So we have:

(6) T[tense:past]. . . V[tense: ] →
T[tense:past]. . . V[tense:past]



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

A few things to note:

We’re using a special notation which distinguishes a feature’s
attribute (here tense) before the colon (:) from its value (here
past) after the colon.

Agree must now depend not on two features matching in
their entirety, but on their attributes matching.

Agree (involving unvalued features) is now quite distinct
from Checking (involving dependent features) – perhaps a
good thing since Agree doesn’t seem to depend on sisterhood
like Checking does.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree
An issue with
tense-marking

Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s the new definition of Agree:

(7) Agree
In a configuration

X[F:val]. . . Y[F: ]

The value from [F:val] is copied to [F: ], resulting in:
X[F:val]. . . Y[F:val]

ê Now situations like where V has the wrong tense will simply
never arise.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

C-command

Now that we have the basic idea of Agree, we need to come back
to an important detail we skipped the first time around:

+ As we’ve defined Agree, it should apply to any two syntactic
objects bearing features with matching attributes.

+ However, it’s easy to show that this is not the case:

(8) * Tyrion thinks I lives in Leipzig.
(9) * I thinks Tyrion lives in Leipzig.

(10) * Tyrion was saying Danaerys living in the towers.

ê So we’re going to need a way to figure out what should
Agree with what.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

+ This will mean putting conditions on the structural
relationship between the two Agreeing objects.

+ The condition of sisterhood used for Checking is too strict
for Agree, so we’ll need something new.

+ The relation we’ll adopt may seem a bit odd and abstract at
first, but we’ll see that it actually makes a lot of sense, and
that it can do a lot of work for us.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

(11) Node A c-commands node B iff A’s sister either:
a. is B, or
b. dominates B.

(12) Node C dominates node D iff
a. C is D’s mother, or
b. C is the mother of a node E which dominates D



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

(13) T

Z

X Y

S

W R

T c-commands nothing

Z c-commands S, W, R

X c-commands Y

Y c-commands X

S c-commands Z, X, Y

W c-commands R

R c-commands W



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s why c-command isn’t such a weird idea:

+ An object will always c-command everything contained in
the constituent it Merges with, and nothing else.

+ Saying that syntactic operations like Agree are sensitive to
c-command is essentially just saying that each object has one
chance to make things happen.

+ When it Merges with another object, it’s allowed to look
inside it for instances of relevant features, but after that, it’s
done.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

So here’s a new definition for Agree, with the addition in boldface:

(14) Agree
In a configuration

X[F:val]. . . Y[F: ]

where . . . represents a c-command relation, the value
from [F:val] is copied to [F: ], resulting in:

X[F:val]. . . Y[F:val]



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Reflexive binding

Now let’s look at an empirical pattern that supports the idea that
syntax cares about c-command. Consider the basics of the
distribution of reflexive forms with -self:

(15) * Herself arrived.
(16) She kicked herself.
(17) * I kicked herself.
(18) * He kicked herself.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

We can propose the following as a first shot at accounting for
these facts:

(19) The Reflexive Generalization (version 1)
A reflexive pronoun must be coreferential with another
expression in the sentence.

(20) The Coreferentiality Hypothesis
For two expressions to be coreferential, they must bear the
same φ-features.

We introduce the term φ-features to refer collectively to
person, number and gender features.

We need something like this to handle 18, where herself
doesn’t seem to be happy to go with he.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Now here’s a contrast that 19 can’t handle:

(21) I hit myself.
(22) * Myself hit me.

ê It looks like the reflexive has to come after its antecedent.

So let’s try this:

(23) The Reflexive Generalization (version 2)
A reflexive must be coreferential with a preceding
expression in the same sentence.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

But here are some more data that don’t fit with version 2 either:

(24) The girl I saw left.
(25) * The girl I saw hit myself.

Consider some constituency facts:

(26) [She] left.
(27) It was [the girl I saw] who left.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

So this should be the structure:

(28) TP

NP

The man I saw

vP

shaved myself

+ Note that whatever the internal structure of that NP should
be, I does not c-command myself.

So let’s try this:

(29) The Reflexive Generalization (version 3)
A reflexive must be coreferential with a c-commanding
expression in the same sentence.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

This also covers the fact we started with:

(30) TP

myself vP

shaved me

And explains why possessors generally can’t bind:

(31) * [My mother] hated myself.

We’re still a long way from getting reflexive binding right – for
one thing the sentence is not the right-sized domain for binding.

+ But whatever the precise characterization of binding domains
and requirements turns out to be, it is clear that c-command
will play a crucial rule.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

So reflexives provide some empirical evidence that c-command is
relevant for grammar, thus it’s not a bad idea to include it in our
definition of Agree.

? But so now how can we try to make our new reflexive
generalization fit in with the rest of the theory we’re
building?

+ As it stands right now, the reflexive generalization is a
completely independent principle, not integrated with
anything else.

+ It has c-command in common with Agree, but this is just a
stipulation, not derived in any principled way.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Now, note interestingly enough that the phenomenon of reflexives
fits into the broader category we mentioned of action at a distance:

+ The form and reference of the reflexive element depends on
the NP that binds it.

ê So clearly our strategy should be to try to reformulate the
reflexive generalization in terms of Agree, our new operation
for dealing with such phenomena.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

There are a number of Agree-based approaches that have been
proposed for binding in recent years.

We’re going to adopt one here which is quite popular, even
though we’re pretty sure it will turn out to be wrong in some
important details.

Still, it has the advantages of getting the basics right, and of
being relatively straightforward – not requiring us to add too
many exotic features and things to our theory.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

The basic idea is that binding is actually Agree for φ-features.

φ-features are the features normally involved in agreement
(which we’ll discuss later on).

And again, they’re precisely the features that must match
between a reflexive and its binder, so it is natural to think
they are somehow involved in an Agree relation.

All that has to be said in addition then is that the defining
property of reflexives is that they come into the derivation
with unvalued φ-features.

The reflexive generalization then just falls out of the fact that
these features will have to get valued, via Agree with a
c-commanding NP with valued φ-features.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s how it would look:

(32) vP

John[N, φ: 3ms] VP

shaved[V]

him

self[N, φ:

3ms

]

(Actually, there is one open issue related to the direction of the
c-command relationship which we’ll set aside for now. . . )



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s how it would look:

(32) vP

John[N, φ: 3ms] VP

shaved[V]

him

self[N, φ: 3ms]

(Actually, there is one open issue related to the direction of the
c-command relationship which we’ll set aside for now. . . )



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s how it would look:

(32) vP

John[N, φ: 3ms] VP

shaved[V] himself[N, φ: 3ms]

(Actually, there is one open issue related to the direction of the
c-command relationship which we’ll set aside for now. . . )



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command
Reflexive binding

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s how it would look:

(32) vP

John[N, φ: 3ms] VP

shaved[V] himself[N, φ: 3ms]

(Actually, there is one open issue related to the direction of the
c-command relationship which we’ll set aside for now. . . )



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Introducing Move

Now we turn to a different kind of action at a distance, where an
entire syntactic object shows up where we don’t expect it. We
start with a word-order issue mentioned last time:

Recall that, for thematic reasons, we think that subjects are
merged in Spec-vP:

(33) vP

Subject v̄

v VP

. . .



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

And we’ve argued that finite auxiliaries surface in T, above
vP:

(34) TP

Aux vP

Subject v̄

v VP

. . .



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

This predicts that subjects will come after the finite auxiliary, but
of couse they come before it, at least in declaratives:

(35) * Will Cassandra foretell disaster again.
(36) Cassandra will foretell disaster again.

We are forced to find a new way to deal with this.

What we’re going to say is that the subject does initially
Merge in Spec-vP, as expected on the basis of θ-roles.

Then we’ll say that it Moves to Spec-TP.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s how it will look:

(37) TP

Subject

T̄

T vP

<

Subject

>

v̄

v VP

V Object

+ We indicate the place where an element has moved from with
a copy of the element formatted like <this>.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s how it will look:

(37) TP

Subject T̄

T vP

<Subject> v̄

v VP

V Object

+ We indicate the place where an element has moved from with
a copy of the element formatted like <this>.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Here’s how it will look:

(37) TP

Subject T̄

T vP

<Subject> v̄

v VP

V Object

+ We indicate the place where an element has moved from with
a copy of the element formatted like <this>.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Again, this new operation Move represents a serious addition to
the complexity of our theory, so we’re going to need to think very
carefully about it and make sure it’s justified.

? Is there any additional evidence for the subject movement?

? Are there any other examples of similar movements?

? Can we explain why this movement should happen?

? Can we integrate Move somehow with the rest of our theory
in a way that keeps overall complexity to a minimum?



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

Evidence for subject movement

Quantifier float

Consider sentences with quantified subjects:

(38) All the dragons had escaped.
(39) Both the twins might have been at the party.

These also have paraphrases where the quantifier ‘floats’ away
from the subject:

(40) The dragons had all escaped.
(41) The twins might both have been at the party.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

How can we explain this behavior? How about this:

+ The quantifiers start out with the NPs, but the NPs move to
the left, and the quantifiers don’t always come along.

Specifically:

The Q+NP combo starts out in Spec-vP, and the NP
subsequently moves to TP.

Sometimes the Q comes along for the ride, and sometimes it
doesn’t.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

This has some promise:

+ It captures the fact that in both orders, the quantifiers
semantically seem to relate to the NPs.

+ And the movement we have to assume is independently
supported, given the order of subjects and auxiliaries.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

So here’s how it would look if just the NP moves:

(42) TP

NP

the dragons

T̄

had vP

NP

all <the dragons>

v̄

v VP

escaped



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

And here’s the version where the quantifier goes along:

(43) TP

NP

all NP

the dragons

T̄

had vP

<all the dragons> v̄

v VP

escaped



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

Expletives

There’s a special use of the word there, which isn’t about location,
and in fact seems to have no real meaning:

(44) There are many fish in the sea.
(45) There were people playing on the beach.

there is called an expletive, which essentially means
placeholder.

In these sentences, there is holding the place of the subject.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

So note that there are similar sentences where the normal subject
occupies the position that was held by there:

(46) Many fish are in the sea.
(47) People were playing on the beach.

And note that there behaves like the subject for purposes of
tag-question formation:

(48) People are playing on the beach, aren’t they?
(49) There are people playing on the beach, aren’t there?



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

This furnishes another argument for subject movement:

+ Expletive sentences have the following form:

(50) there T . . . subject vP

+ Parallel sentences without expletives appear to have this
form:

(51) subject T . . . vP

+ The surface position of the subject with expletives makes a
lot more sense if what underlies 51 is really this:

(52) subject T . . . <subject> vP



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement
Quantifier float

Expletives

Introduction

Move as Merge

ê So we have good evidence that subjects start out in a lower
position, which we call Spec-vP and move to a higher
position, which we call Spec-TP.

+ Now we need to motivate this movement within our theory,
and ideally explain why it happens.

We’ll work on that, along with other aspects of movement, in the
next handout.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge

Introduction

Our job now is to explore this new operation Move.

? Can we further justify the addition of this operation to our
theory with new data?

? Why does language make use of Move, and why do
particular items Move while others don’t?

? How can we integrate Move into our existing theory so as to
keep things as simple as possible?



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge
Move is built on Merge

Move as Merge

Taking the last question first, we start with the observation that
Move has a lot in common with our other operation Merge.

At a very simple level, both affect the positioning of
elements in the hierarchical structure.

In fact, if we think of Move as taking something in the
structure and combining it with a different part of the
structure, both operations involve combining things.

Of course, there is a clear asymmetry here:

+ Merge seems to be simpler than Move, since it’s really just
the combining step.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge
Move is built on Merge

Merge is also indispensable in a way that Move is not:

The essence of a syntax is the combination of simpler pieces
to make more complex structures, so something like Merge
must be part of the system.

This is not just true of human language syntax but of the
syntax of any symbolic system. E.g. formal logic,
programming languages and recipes all involve a counterpart
of Merge.

It is not clear however that something like Move should be
needed. We can perfectly well imagine a symbolic system
that does not have anything that looks like it.

So e.g. there is no obvious analog to Move in the
non-language systems just mentioned.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge
Move is built on Merge

All of this leads to the conclusion that we should try to explicitly
relate Move to Merge within our theory.

ê To the extent possible, we should in fact redefine Move in
terms of Merge.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge
Move is built on Merge

Move is built on Merge

Let’s start with the idea mentioned above, that Move involves
taking something within the existing structure, and combining it
with a different part of the structure.

The obvious thing to do now is to make that second
combining step actually be Merge.

(53) Move (first version): Take a syntactic object that is a
constituent of an existing structure and Merge it
elsewhere.

There are two things we need to do then:
1 Make sure that the second part of Move really can conform

to our existing definition of Merge.
2 Make more precise the first step of grabbing a syntactic

object to Merge elsewhere.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge
Move is built on Merge

Recall our definition of Merge:

(54) Merge: Take two syntactic objects, and join them together
at their roots to form a new syntactic object.

So the only thing we really have to worry about here is that when
something Moves, it should Move to the root of the existing
structure, since we want to continue to respect the Extension
Condition.

(55) Move (second version): Take a syntactic object that is a
constituent of an existing structure and Merge it with the
entire structure.



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge
Move is built on Merge

For the moment, this doesn’t present any problems, since the only
instance of Move we’ve posited so far obeys this:

(56) TP

Cassandra[N] T̄

will[T] vP

<Cassandra> v̄

v VP

foretell[V] disaster[N]



Introduction to
Syntax

Lecture 8-9:
Selection

A new class of
puzzles

Introducing
Agree

C-command

Introducing
Move

Evidence for
subject
movement

Introduction

Move as Merge
Move is built on Merge

When the subject Cassandra Moves, it Merges with the node
labeled T̄, which is the root node at that point in the
derivation.

In more advanced versions of syntax, you will see that things
aren’t always so simple, but this works for now.


	A new class of puzzles
	Introducing Agree
	An issue with tense-marking
	Agree

	C-command
	Reflexive binding

	Introducing Move
	Evidence for subject movement
	Quantifier float
	Expletives

	Introduction
	Move as Merge
	Move is built on Merge


